

DPP - 5

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://youtu.be/jlqwI7Sr6TA

Q 1. If a liquid of specific gravity 1 , rises to a height of 2.5 cm in a capillary tube, then another liquid of specific gravity 1.25 will rise to the height in the same tube will be (if contact angle and surface tension is same in both cases)
(a) 1 cm
(b) 2 cm
(c) 1.25 cm
(d) 1.5 cm

Q 2. Water rises to a height h in a capillary tube of cross-sectional area A. the height to which water will rise in a capillary tube of cross-sectional area $4 A$ will be
(a) h
(b) $h / 2$
(c) $\mathrm{h} / 4$
(d) 4 h

Q 3. Find the terminal velocity with which an air bubble of density $1 \mathrm{kgm}^{-3}$ and 0.6 mm in diameter will rise in a liquid of viscosity $0.15 \mathrm{Nm}^{-2} s$ and of specific gravity 0.9 ?
(a) $1.2 \times 10^{-3} \mathrm{~m} / \mathrm{s}$
(b) $2.1 \times 10^{-3} \mathrm{~m} / \mathrm{s}$
(c) $2.4 \times 10^{-3} \mathrm{~m} / \mathrm{s}$
(d) $4.2 \times 10^{-3} \mathrm{~m} / \mathrm{s}$

Q 4. Flow of fluid through a tube is streamlined, when the Reynold number is
(a) 3100
(b) 2500
(e) 200
(d) 2200

Q 5. If a capillary tube is tilted to 45° and 60° from the vertical then the ratio of length l_{1} and l_{2} of liquid columns in it will be-
(a) $1: \sqrt{2}$
(b) $\sqrt{2}: 1$
(c) $2: 1$
(d) $1: 2$

Q 6. A small spherical solid ball is dropped in a viscous liquid. Its journey in the liquid is best described in the figure by -

Distance Travelled
(a) Curve A
(b) Curve B
(c) Curve C
(d) Curve D

Q 7. A steel shot of diameter 2 mm is dropped in a viscous liquid filled in a drum. Find the terminal speed of the shot. Density of the material of the shot $=8.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$,
density of liquid $=1.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. Coefficient of viscosity of liquid $=1.0 \mathrm{~kg} /(\mathrm{m}-\mathrm{s})$, $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$
(a) $1.55 \mathrm{~cm} / \mathrm{s}$
(b) $1.455 \mathrm{~cm} / \mathrm{s}$
(c) $5.1 \mathrm{~cm} / \mathrm{s}$
(d) None of these

Q 8. A ball of radius r and density r falls freely under gravity through a distance h before entering water (density $1 \mathrm{~g} / \mathrm{cc}$). Velocity of ball does not change on entering water. If viscosity of water is h, the value of h is given by -

(a) $\frac{2}{9} r^{2}\left(\frac{1-\rho}{\eta}\right) \mathrm{g}$
(b) $\frac{2}{81} r^{2}\left(\frac{\rho-1}{\eta}\right) \mathrm{g}$
(c) $\frac{2}{81} r^{4}\left(\frac{1-\rho}{\eta}\right)^{2} \mathrm{~g}$
(d) $\frac{2}{81} r^{4}\left(\frac{p-1}{\eta}\right) g$

Q 9. In a U-tube the radii of two columns are respectivety r_{1} and r_{2} and if a liquid of density d filled in it has level difference of h then the surface tension of the liquid is
(a) $\mathrm{T}=\frac{h d g}{2}\left(\frac{r_{1} r_{2}}{r_{2}-r_{1}}\right)$
(b) $\mathrm{T}=\frac{h d g}{4}\left(\frac{r_{1} r_{2}}{r_{2}-r_{1}}\right)$
(c) $\mathrm{T}=\frac{h d g}{3}\left(\frac{r_{1} r_{2}}{r_{2}-r_{1}}\right)$
(d) $\mathrm{T}=\frac{h d g}{6}\left(\frac{r_{1} r_{2}}{r_{2}-r_{1}}\right)$

Q 10. Two rain drops of same radius coalesce. Before doing so each was moving with terminal velocity v . What is terminal velocity of the single drop so formed?
(a) $v / 2$
(b) 2 v
(c) $v(2)^{1 / 3}$
(d) $v(2)^{2 / 3}$

Q 11. A metallic sphere of volume V falls through glycerin with a terminal velocity $2 \mathrm{~m} / \mathrm{s}$. If we drop a ball of volume 8 V of the same metal into the column of glycerin, the terminal velocity of the ball will be -
(a) $2 \mathrm{~m} / \mathrm{s}$
(b) $4 \mathrm{~m} / \mathrm{s}$
(c) $8 \mathrm{~m} / \mathrm{s}$
(d) $16 \mathrm{~m} / \mathrm{s}$

Q 12. A metallic sphere is projected in glycerin with velocity $4 \mathrm{~m} / \mathrm{s}$ in vertically downward direction, it finally moves with terminal velocity $20 \mathrm{~m} / \mathrm{s}$. If same metallic sphere is projected in glycerin with velocity $4 \mathrm{~m} / \mathrm{s}$ in vertically upward direction, it's terminal velocity will be -
(a) $10 \mathrm{~m} / \mathrm{s}$
(b) $20 \mathrm{~m} / \mathrm{s}$
(c) $30 \mathrm{~m} / \mathrm{s}$
(d) $40 \mathrm{~m} / \mathrm{s}$

Answer Key

Q. 1	b	Q. 2	b	Q. 3	a	Q. 4	c	Q. 5	a
Q. 6	c	Q. 7	a	Q. 8	c	Q. 9	a	Q.10	d
Q. 11	c	Q. 12	b						

